\(\int \frac {\sqrt [4]{a+b x^2}}{(c+d x^2)^2} \, dx\) [334]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [F]
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 278 \[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=\frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac {\sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),2\right )}{2 c d \left (a+b x^2\right )^{3/4}}-\frac {\sqrt [4]{a} (b c-2 a d) \sqrt {-\frac {b x^2}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}},\arcsin \left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right ),-1\right )}{4 c d (b c-a d) x}-\frac {\sqrt [4]{a} (b c-2 a d) \sqrt {-\frac {b x^2}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}},\arcsin \left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right ),-1\right )}{4 c d (b c-a d) x} \]

[Out]

1/2*x*(b*x^2+a)^(1/4)/c/(d*x^2+c)+1/2*(1+b*x^2/a)^(3/4)*(cos(1/2*arctan(x*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*a
rctan(x*b^(1/2)/a^(1/2)))*EllipticF(sin(1/2*arctan(x*b^(1/2)/a^(1/2))),2^(1/2))*a^(1/2)*b^(1/2)/c/d/(b*x^2+a)^
(3/4)-1/4*a^(1/4)*(-2*a*d+b*c)*EllipticPi((b*x^2+a)^(1/4)/a^(1/4),-a^(1/2)*d^(1/2)/(a*d-b*c)^(1/2),I)*(-b*x^2/
a)^(1/2)/c/d/(-a*d+b*c)/x-1/4*a^(1/4)*(-2*a*d+b*c)*EllipticPi((b*x^2+a)^(1/4)/a^(1/4),a^(1/2)*d^(1/2)/(a*d-b*c
)^(1/2),I)*(-b*x^2/a)^(1/2)/c/d/(-a*d+b*c)/x

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {423, 544, 239, 237, 410, 109, 418, 1232} \[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=-\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} (b c-2 a d) \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {a d-b c}},\arcsin \left (\frac {\sqrt [4]{b x^2+a}}{\sqrt [4]{a}}\right ),-1\right )}{4 c d x (b c-a d)}-\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} (b c-2 a d) \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {a d-b c}},\arcsin \left (\frac {\sqrt [4]{b x^2+a}}{\sqrt [4]{a}}\right ),-1\right )}{4 c d x (b c-a d)}+\frac {\sqrt {a} \sqrt {b} \left (\frac {b x^2}{a}+1\right )^{3/4} \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),2\right )}{2 c d \left (a+b x^2\right )^{3/4}}+\frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )} \]

[In]

Int[(a + b*x^2)^(1/4)/(c + d*x^2)^2,x]

[Out]

(x*(a + b*x^2)^(1/4))/(2*c*(c + d*x^2)) + (Sqrt[a]*Sqrt[b]*(1 + (b*x^2)/a)^(3/4)*EllipticF[ArcTan[(Sqrt[b]*x)/
Sqrt[a]]/2, 2])/(2*c*d*(a + b*x^2)^(3/4)) - (a^(1/4)*(b*c - 2*a*d)*Sqrt[-((b*x^2)/a)]*EllipticPi[-((Sqrt[a]*Sq
rt[d])/Sqrt[-(b*c) + a*d]), ArcSin[(a + b*x^2)^(1/4)/a^(1/4)], -1])/(4*c*d*(b*c - a*d)*x) - (a^(1/4)*(b*c - 2*
a*d)*Sqrt[-((b*x^2)/a)]*EllipticPi[(Sqrt[a]*Sqrt[d])/Sqrt[-(b*c) + a*d], ArcSin[(a + b*x^2)^(1/4)/a^(1/4)], -1
])/(4*c*d*(b*c - a*d)*x)

Rule 109

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(3/4)), x_Symbol] :> Dist[-4, Subst[
Int[1/((b*e - a*f - b*x^4)*Sqrt[c - d*(e/f) + d*(x^4/f)]), x], x, (e + f*x)^(1/4)], x] /; FreeQ[{a, b, c, d, e
, f}, x] && GtQ[-f/(d*e - c*f), 0]

Rule 237

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]))*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 239

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Dist[(1 + b*(x^2/a))^(3/4)/(a + b*x^2)^(3/4), Int[1/(1 + b*(x^2
/a))^(3/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 410

Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Dist[Sqrt[(-b)*(x^2/a)]/(2*x), Subst[I
nt[1/(Sqrt[(-b)*(x/a)]*(a + b*x)^(3/4)*(c + d*x)), x], x, x^2], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
 0]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a,
 b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 423

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-x)*(a + b*x^n)^(p + 1)*((
c + d*x^n)^q/(a*n*(p + 1))), x] + Dist[1/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(n*
(p + 1) + 1) + d*(n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[
p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, n, p, q, x]

Rule 544

Int[(((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Dist[f/d,
Int[(a + b*x^n)^p, x], x] + Dist[(d*e - c*f)/d, Int[(a + b*x^n)^p/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e,
 f, p, n}, x]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )}-\frac {\int \frac {-a-\frac {b x^2}{2}}{\left (a+b x^2\right )^{3/4} \left (c+d x^2\right )} \, dx}{2 c} \\ & = \frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac {b \int \frac {1}{\left (a+b x^2\right )^{3/4}} \, dx}{4 c d}-\frac {\left (\frac {b c}{2}-a d\right ) \int \frac {1}{\left (a+b x^2\right )^{3/4} \left (c+d x^2\right )} \, dx}{2 c d} \\ & = \frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )}-\frac {\left (\left (\frac {b c}{2}-a d\right ) \sqrt {-\frac {b x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-\frac {b x}{a}} (a+b x)^{3/4} (c+d x)} \, dx,x,x^2\right )}{4 c d x}+\frac {\left (b \left (1+\frac {b x^2}{a}\right )^{3/4}\right ) \int \frac {1}{\left (1+\frac {b x^2}{a}\right )^{3/4}} \, dx}{4 c d \left (a+b x^2\right )^{3/4}} \\ & = \frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac {\sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{2 c d \left (a+b x^2\right )^{3/4}}+\frac {\left (\left (\frac {b c}{2}-a d\right ) \sqrt {-\frac {b x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{a}} \left (-b c+a d-d x^4\right )} \, dx,x,\sqrt [4]{a+b x^2}\right )}{c d x} \\ & = \frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac {\sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{2 c d \left (a+b x^2\right )^{3/4}}-\frac {\left (\left (\frac {b c}{2}-a d\right ) \sqrt {-\frac {b x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {d} x^2}{\sqrt {-b c+a d}}\right ) \sqrt {1-\frac {x^4}{a}}} \, dx,x,\sqrt [4]{a+b x^2}\right )}{2 c d (b c-a d) x}-\frac {\left (\left (\frac {b c}{2}-a d\right ) \sqrt {-\frac {b x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {d} x^2}{\sqrt {-b c+a d}}\right ) \sqrt {1-\frac {x^4}{a}}} \, dx,x,\sqrt [4]{a+b x^2}\right )}{2 c d (b c-a d) x} \\ & = \frac {x \sqrt [4]{a+b x^2}}{2 c \left (c+d x^2\right )}+\frac {\sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{2 c d \left (a+b x^2\right )^{3/4}}-\frac {\sqrt [4]{a} (b c-2 a d) \sqrt {-\frac {b x^2}{a}} \Pi \left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )\right |-1\right )}{4 c d (b c-a d) x}-\frac {\sqrt [4]{a} (b c-2 a d) \sqrt {-\frac {b x^2}{a}} \Pi \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )\right |-1\right )}{4 c d (b c-a d) x} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.14 (sec) , antiderivative size = 232, normalized size of antiderivative = 0.83 \[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=\frac {x \left (\frac {b x^2 \left (1+\frac {b x^2}{a}\right )^{3/4} \operatorname {AppellF1}\left (\frac {3}{2},\frac {3}{4},1,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )}{c^2}+\frac {6 \left (\frac {a+b x^2}{c}-\frac {6 a^2 \operatorname {AppellF1}\left (\frac {1}{2},\frac {3}{4},1,\frac {3}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )}{-6 a c \operatorname {AppellF1}\left (\frac {1}{2},\frac {3}{4},1,\frac {3}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )+x^2 \left (4 a d \operatorname {AppellF1}\left (\frac {3}{2},\frac {3}{4},2,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )+3 b c \operatorname {AppellF1}\left (\frac {3}{2},\frac {7}{4},1,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )\right )}\right )}{c+d x^2}\right )}{12 \left (a+b x^2\right )^{3/4}} \]

[In]

Integrate[(a + b*x^2)^(1/4)/(c + d*x^2)^2,x]

[Out]

(x*((b*x^2*(1 + (b*x^2)/a)^(3/4)*AppellF1[3/2, 3/4, 1, 5/2, -((b*x^2)/a), -((d*x^2)/c)])/c^2 + (6*((a + b*x^2)
/c - (6*a^2*AppellF1[1/2, 3/4, 1, 3/2, -((b*x^2)/a), -((d*x^2)/c)])/(-6*a*c*AppellF1[1/2, 3/4, 1, 3/2, -((b*x^
2)/a), -((d*x^2)/c)] + x^2*(4*a*d*AppellF1[3/2, 3/4, 2, 5/2, -((b*x^2)/a), -((d*x^2)/c)] + 3*b*c*AppellF1[3/2,
 7/4, 1, 5/2, -((b*x^2)/a), -((d*x^2)/c)]))))/(c + d*x^2)))/(12*(a + b*x^2)^(3/4))

Maple [F]

\[\int \frac {\left (b \,x^{2}+a \right )^{\frac {1}{4}}}{\left (d \,x^{2}+c \right )^{2}}d x\]

[In]

int((b*x^2+a)^(1/4)/(d*x^2+c)^2,x)

[Out]

int((b*x^2+a)^(1/4)/(d*x^2+c)^2,x)

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((b*x^2+a)^(1/4)/(d*x^2+c)^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=\int \frac {\sqrt [4]{a + b x^{2}}}{\left (c + d x^{2}\right )^{2}}\, dx \]

[In]

integrate((b*x**2+a)**(1/4)/(d*x**2+c)**2,x)

[Out]

Integral((a + b*x**2)**(1/4)/(c + d*x**2)**2, x)

Maxima [F]

\[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {1}{4}}}{{\left (d x^{2} + c\right )}^{2}} \,d x } \]

[In]

integrate((b*x^2+a)^(1/4)/(d*x^2+c)^2,x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(1/4)/(d*x^2 + c)^2, x)

Giac [F]

\[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {1}{4}}}{{\left (d x^{2} + c\right )}^{2}} \,d x } \]

[In]

integrate((b*x^2+a)^(1/4)/(d*x^2+c)^2,x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(1/4)/(d*x^2 + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{a+b x^2}}{\left (c+d x^2\right )^2} \, dx=\int \frac {{\left (b\,x^2+a\right )}^{1/4}}{{\left (d\,x^2+c\right )}^2} \,d x \]

[In]

int((a + b*x^2)^(1/4)/(c + d*x^2)^2,x)

[Out]

int((a + b*x^2)^(1/4)/(c + d*x^2)^2, x)